Company Overview
Optotherm manufactures cost-effective, turn-key infrared imaging systems for electronics failure analysis and temperature measurement applications including:
- Lock-in thermography
- Photon emission testing
- Junction temperature measurement
- Active device transient temperature analysis
- PCB troubleshooting
Sentris is Optotherm's product line of infrared imaging systems, each configured for specific applications. Sentris system configurations include:
- Sentris FA-MW
- Sentris FA-LW
- Sentris FA-SW
- Sentris RD-MW
- Sentris PCB-LW
Optotherm designs and manufactures the primary Sentris system components including infrared cameras and lenses, optical assemblies, test equipment, and image analysis and testing software.
Company Name: Optotherm, Inc.
Headquarters: Warrendale, Pennsylvania, USA
Year Founded: 2000
Phone Number: +1 (724) 940-7600
Website: https://www.optotherm.com
Email: sales@optotherm.com
YouTube: Youtube.com/@Optotherm
LinkedIn: Linkedin.com/company/optotherm-inc/
Electronic Devices Tested
- Semiconductor packages
- Decapsulated devices
- Semiconductor wafers
- SMD components
- Printed circuit boards
- Printed circuit board assemblies
- Flex circuits
Faults Detected
- Leakage current
- Resistive shorts
- Gate/drain shorts
- Package mold compound shorts
- Metallization shorts
- ESD related faults
- Latch-up sites
- Oxide layer breakdown
Industries Served
- Integrated circuit design and manufacturing
- Printed circuit board manufacturing
- Printed circuit board assembly manufacturing
- Electronics failure analysis laboratories
- Materials science design and manufacturing
- MEMS research
- Academic research & design laboratories
References in Research
Optotherm, Inc. systems are referenced in peer-reviewed research papers and used by leading universities and semiconductor labs.
Tian, F., Zhou, T., Zhang, X., Chen, R., & Chen, S. (2025). Electrically pumped surface-emitting amplified spontaneous emission from colloidal quantum dots. Light: Science & Applications, 14(279). https://www.nature.com/articles/s41377-025-01972-1
Asuncion, C., Raborar, M., & Mendaros, R. (2025). Non-destructive package-level fault localization in chip-scale package ball-grid array (CSP-BGA) devices through lock-in thermography and time-domain reflectometry (TDR). ASEMEP National Technical Symposium (SEIPI). https://seipi.org.pdf
Rautio, J., Kärkkäinen, T., Niemelä, M., Silventoinen, P., Lohtander, L., Leppänen, J., & Ingman, J. (2025). Impeding dendritic corrosion in silicone gel potted power modules through surface heating. IET Power Electronics, 18(1). https://ietresearch.onlinelibrary.wiley.com
Bhatti, H. (2025). On-chip calibration of microscale thermocouples for precise temperature measurement. arXiv. https://arxiv.org/pdf
Bhatti, H. (2025). Monolithic integration and calibration of micro-thin film thermocouples for in situ thermal characterization of wide and ultrawide bandgap semiconductor devices. KAUST Research Repository.https://repository.kaust.edu
Li, L., Gao, B., Chen, T., Ng, C., Wang, Y., Huang, Q., Sun, K., Shou, Y., Ma, Y., Chen, H., & Li, Y. (2025). Omnidirectional circularly polarized thermal radiation enabled by chiral metasurface. Small Structures. https://onlinelibrary.wiley.com
Bhatti, H., Yuvaraja, S., Wang, C., Tang, X., & Li, X. (2024). Monolithic integrated micro-thin-film thermocouples for on-chip temperature measurement of GaN HEMPTs. IEEE Transactions on Electron Devices, 71(12). https://ieeexplore.ieee.org
Li, J., Li, J., Liu, H., & Yi, F. (2024). Phonon-mediated infrared plasmonic metamaterial emitters towards high-capacity multifunctional encoding and display. Optics Express, 32(16). https://opg.optica.org
Stoukatch, S., Dupont, F., Laurent, P., & Redouté, J. (2023). Package design thermal optimization for metal-oxide gas sensors by finite element modeling and infra-red imaging characterization. Materials, 16(18), 6202. https://doi.org
Tiwary, N., Ross, G., Vuorinen, V., & Paulasto-Kröckel, M. (2022). Impact of inherent design limitations for Cu–Sn SLID microbumps on its electromigration reliability for 3D ICs. IEEE Transactions on Electron Devices, 70(1), 222–229. https://ieeexplore.ieee.org
Leppänen, J., Ross, G., Vuorinen, V., Ingman, J., Jormanainen, J., & Paulasto-Kröckel, M. (2021). A humidity-induced novel failure mechanism in power semiconductor modules. Microelectronics Reliability, 120.https://www.sciencedirect.com
Chen, Y., Li, M., Yan, W., Zhuang, X., Wei, K., & Cheng, X. (2021). Sensitive and low-power metal oxide gas sensors with a low-cost microelectromechanical heater. ACS Omega. https://pubs.acs.org
Li, J., Li, J., Zhou, H., Zhuang, G., Liu, H., Wang, S., & Yi, F. (2021). Plasmonic metamaterial absorbers with strong coupling effects for small pixel infrared detectors. Optics Express, 29(15). https://opg.optica.org
Xu, R., & Lin, Y. (2020). Tunable infrared metamaterial emitter for gas sensing application. Nanomaterials, 10(8), 1442. https://www.mdpi.com
Qi, Y., Zhu, Y., Zhang, J., Lin, X., Cheng, K., Jiang, L., & Yu, H. (2018). Evaluation of LPCVD SiNx gate dielectric reliability by TDDB measurement in Si-substrate-based AlGaN/GaN MIS-HEMT. IEEE Transactions on Electron Devices, 65(5), 1759–1764. https://ieeexplore.ieee.org
Yao, Y., An, Y., Tu, K.N., & Liu, Y. (2024). Influence factors of joule heating in microbump in advanced packaging technology. 2024 25th International Conference on Electronic Packaging Technology (ICEPT). https://ieeexplore.ieee.org
Stoukatch, S., Fagnard, J., Roy, G., Laurent, P., Dupont, F., Jacques, P., & Redouté, J. (2022). Thermal conductivity characterization of an in-house formulated thermal insulating xerogel-epoxy composite adhesive for electronics applications. 2022 IEEE 9th Electronics System-Integration Technology Conference (ESTC). https://ieeexplore.ieee.org
Our Team
Rich Barton
President & Technical Director
Ben Barton
Operations Manager
Dan Uthman
Supply Chain Manager
Anna Barton
Product Engineer
(& Nutmeg)
Victor Tonti
Engineering Technician
Greg Steedle
Engineering Technician
Josie Barton
Marketing Manager